top of page

Importancia del analisis de algorítmos

 

El análisis de algoritmos es una parte importante de la Teoría de complejidad computacional más amplia, que provee estimaciones teóricas para los recursos que necesita cualquier algoritmo que resuelva un problema computacional dado. Estas estimaciones resultan ser bastante útiles en la búsqueda de algoritmos eficientes.

A la hora de realizar un análisis teórico de algoritmos es común calcular su complejidad en un sentido asintótico, es decir, para un tamaño de entrada suficientemente grande. La cota superior asintótica, y las notaciones omega (cota inferior) y theta (caso promedio) se usan con esa finalidad. Por ejemplo, la búsqueda binaria decimos que se ejecuta en una cantidad de pasos proporcional a un logaritmo, en O(log(n)), coloquialmente "en tiempo logarítmico". Normalmente las estimaciones asintóticas se utilizan porque diferentes implementaciones del mismo algoritmo no tienen por qué tener la misma eficiencia. No obstante la eficiencia de dos implementaciones "razonables" cualesquiera de un algoritmo dado están relacionadas por una constante multiplicativa llamada constante oculta.

bottom of page